MCP: The lives of plant-dwelling bacteria
You can find hordes of bacteria on the surfaces of a plant’s leaves, stems, flowers and fruits. These bacteria range from beneficial to benign, with the occasional bad actor. If you examined Arabidopsis thaliana, you likely would find two bacteria called Sphingomonas melonis and Methylobacterium extorquens inhabiting the entire above-ground plant surface.

To understand better the interactions and adaptations that allow these bacteria and many others to call the plant home, researchers recently performed proteomic analyses of these two organisms. By applying a technique known as SWATH MS, the researchers identified a set of shared proteins, which indicates common mechanisms that underlie successful leaf colonization. They described their work in a in the journal .
“Historically, people have only looked at the roots,” says at the ETH Zurich’s Institute of Microbiology. This is largely because of the role symbiotic root bacteria play in providing the host with nutrients. How the bacteria interact with the part of the plant that is above the ground has been looked into only recently, says M眉ller. “It became increasingly obvious that the leaves and the phyllosphere in general — all the above-ground parts of plants — are also colonized, and they have an impact on the host cells too,” he adds. M眉ller is a postdoctoral researcher in the lab of , the lead author on the MCP paper.
Despite their shared phylogenetic class of Alphaproteobacteria, S. melonis and M. extorquens have evolved to occupy different ecological niches on plants. S. melonis has adapted to a diet of amino acids and hydrocarbon compounds; M. extorquens subsists primarily on methanol, oxalate and alkanesulfonates and also carries out anoxygenic photosynthesis. Additionally, S. melonis has been demonstrated to confer protection against a common leaf pathogen. Researchers believe that the bacteria might provide other symbiotic benefits to the host.
“We are lacking a lot of functional information,” says M眉ller. “This proteomics approach was one of the first steps towards providing such insights. We know what is present in terms of bacterial taxa, but we need to understand what they are actually doing there and how they might influence each other.”
To examine which of their proteins S. melonis and M. extorquens activate when occupying the phyllosphere, M眉ller and colleagues inoculated surface-sterilized seeds of A. thaliana with samples of each strain. They collected the bacteria from the growing plants after 28 days and subjected them to an analysis by shotgun proteomics. From the shotgun proteomics data, the investigators constructed a database containing mass-spectrometric information about every protein of interest. The libraries the researchers generated contained information for about 71 percent of the total proteome of both S. melonis and M. extorquens.
Next, to quantify the bacterial proteomes, M眉ller and colleagues ionized and fragmented the proteins expressed by the bacteria by tandem mass spectrometry. This allowed them to record the mass-to-charge ratios of all fragment ions, along with other characteristics that helped match the fragments to the database.
The researchers then analyzed this quantitative information with special software. They identified 635 candidate proteins for M. extorquens that were regulated significantly on leaf surfaces compared with minimal media and 545 candidate proteins that were regulated significantly on leaf surfaces for S. melonis. Between the two bacteria, there was a shared subset of 17 proteins.
This means that “despite different modes of metabolism, common adaptive strategies seem to exist, such as acquiring limiting macroelements such as sulfur or phosphorus,” says M眉ller. “Among the shared proteins are some of unknown function, potentially indicating that new functions are essential for leaf colonization.”
Future work for M眉ller and colleagues will include examining the differences in the protein repertoires of different, co-existing bacteria to understand better how they manage to share a plant between them.
Enjoy reading ASBMB Today?
Become a member to receive the print edition four times a year and the digital edition monthly.
Learn moreGet the latest from ASBMB Today
Enter your email address, and we鈥檒l send you a weekly email with recent articles, interviews and more.
Latest in Science
Science highlights or most popular articles

Defeating deletions and duplications
Promising therapeutics for chromosome 15 rare neurodevelopmental disorders, including Angelman syndrome, Dup15q syndrome and Prader鈥揥illi syndrome.

Using 'nature鈥檚 mistakes' as a window into Lafora disease
After years of heartbreak, Lafora disease families are fueling glycogen storage research breakthroughs, helping develop therapies that may treat not only Lafora but other related neurological disorders.

Cracking cancer鈥檚 code through functional connections
A machine learning鈥揹erived protein cofunction network is transforming how scientists understand and uncover relationships between proteins in cancer.

Gaze into the proteomics crystal ball
The 15th International Symposium on Proteomics in the Life Sciences symposium will be held August 17鈥�21 in Cambridge, Massachusetts.

Bacterial enzyme catalyzes body odor compound formation
Researchers identify a skin-resident Staphylococcus hominis dipeptidase involved in creating sulfur-containing secretions. Read more about this recent Journal of Biological Chemistry paper.

Neurobiology of stress and substance use
MOSAIC scholar and proud Latino, Bryan Cruz of Scripps Research Institute studies the neurochemical origins of PTSD-related alcohol use using a multidisciplinary approach.