Antibodies inhibit hyperactive protein disposal
A system of ubiquitin-associated enzymes marks misfolded or needless proteins for degradation to maintain protein homeostasis, but its dysfunction can lead to disease. Hyperactivation of the E3 ubiquitin ligase carboxyl-terminus of Hsp70-interacting protein, or CHIP, is linked to cystic fibrosis, neurodegeneration and cancer. Scientists confront numerous challenges when attempting to inhibit CHIP due to its complex interaction network with E2 ubiquitin-conjugating enzymes and chaperones, so that CHIP can orchestrate ubiquitin transfer to the substrate. CHIP has a dimeric structure and uses its tetratricopeptide repeat, or TPR, domain to bind chaperones and a U-box domain to bind the E2 enzyme.

In a recent Journal of Biological Chemistry , Dong hee Chung, Emily Connelly and a team at the University of California, San Francisco, used a biopanning platform for screening inhibitors of CHIP. This technique involved a phage display library of fragment antigen-binding antibodies, or Fabs, segments of a full antibody able to penetrate tissues, and rounds of filtering for CHIP binders. The researchers identified six Fabs for further characterization.
The authors performed fluorescence polarization assays to examine whether the Fabs inhibited binding of a model peptide substrate to the CHIP TPR domain. They also assessed the ability of each Fab to inhibit Hsp70 chaperone ubiquitination by CHIP. The Fab 2F1 stood out because of its strong inhibition of both peptide binding and Hsp70 ubiquitination. Using cryogenic electron microscopy, the researchers determined that two 2F1 molecules bind to the CHIP dimer, one at each U-box domain.
The authors suggested that 2F1 and the other Fabs in this study will provide useful tools for scientists to probe the various CHIP domains and substrate interactions. Inhibiting individual aspects of CHIP function will also help scientists gauge the value of CHIP as a potential drug target.
Enjoy reading ASBMB Today?
Become a member to receive the print edition four times a year and the digital edition monthly.
Learn moreGet the latest from ASBMB Today
Enter your email address, and we鈥檒l send you a weekly email with recent articles, interviews and more.
Latest in Science
Science highlights or most popular articles

Neurobiology of stress and substance use
MOSAIC scholar and proud Latino, Bryan Cruz of Scripps Research Institute studies the neurochemical origins of PTSD-related alcohol use using a multidisciplinary approach.

Pesticide disrupts neuronal potentiation
New research reveals how deltamethrin may disrupt brain development by altering the protein cargo of brain-derived extracellular vesicles. Read more about this recent 偷拍偷窥 & Cellular Proteomics article.

A look into the rice glycoproteome
Researchers mapped posttranslational modifications in Oryza sativa, revealing hundreds of alterations tied to key plant processes. Read more about this recent 偷拍偷窥 & Cellular Proteomics paper.

Proteomic variation in heart tissues
By tracking protein changes in stem cell鈥揹erived heart cells, researchers from Cedars-Sinai uncovered surprising diversity 鈥� including a potential new cell type 鈥� that could reshape how we study and treat heart disease.

Parsing plant pigment pathways
Erich Grotewold of Michigan State University, an ASBMB Breakthroughs speaker, discusses his work on the genetic regulation of flavonoid biosynthesis.

Calcium channel linked to cancer drug resistance
Researchers discover a protein associated with carboplatin-resistant retinoblastoma, suggesting this protein could be a promising therapeutic target. Read more about this recent Journal of Biological Chemistry paper.