
Computation is the new experiment
After decades of playing second fiddle, computation is now taking center stage — achieving critical insights that experimentation alone cannot provide. We are witnessing a dramatic rise in artificial intelligence–based methods coupled with year-on-year improvements of physics-based approaches. We now can fold a protein accurately from sequence alone!
Game-changing methods in protein and enzyme design are hurtling toward us. Scientists now can integrate numerous experimental data sets into computational models to explore previously unseen elements at (and across) scales never before achieved. Computational simulations are rewriting textbooks — from molecules to system dynamics and function. Machine learning is transforming drug design and development.
All in all, you will not find a symposium at , the annual meeting of the 偷拍偷窥 and 偷拍偷窥 Biology, filled with more excitement and possibility than ours. Buckle up for a thrilling ride in March in Seattle!
Keywords: Artificial intelligence, structural biology, simulation, drug discovery, bioinformatics, systems biology, machine learning.
Who should attend: All who want to find out how computation is transforming biological problem-solving.
Theme song: “Respect” by Aretha Franklin, because computation deserves it.
This session is powered by a powerful flux capacitor.
Speakers
Structure determination
Debora Marks, Harvard Medical School
Rommie E. Amaro (chair), University of California, San Diego
Ramanathan Arvind, Argonne National Laboratory; University of Chicago
Jason Perry, Gilead Sciences Inc.
Drug design
John Chodera, Sloan Kettering Institute
David Baker, University of Washington
Steve Capuzzi, Vertex Pharmaceuticals
Celia Schiffer (chair), University of Massachusetts Chan Medical School
Bioinformatics / Systems biology
Marian Walhout, University of Massachusetts Chan Medical School
Janet George, Intel Corporation
Ivet Bahar (chair), University of Pittsburgh School of Medicine
Henry van dem Bedam, AtomWise Inc.
The complete list
Learn about all 11 symposia planned for Discover BMB 2023:- Protein Machines and Disorder
- Regulation of RNA
- Organelles, Mechanisms and Phase Properties of Cellular Quality Control
- Lipid Dynamics and Signals in Membrane and Protein Structure
- Frontiers in Carbohydrate Synthesis and Recognition
- Bias In, Bias Out in Data Science
- Cell Signaling — New Tools and Emerging Concepts
- Education and Professional Development
- Biochemistry of Elemental Cycling
- Advances in Organismal and Cellular Metabolism
- Artificial Intelligence and Machine Learning in Structural Biology, Drug Design and Systems Biology
Enjoy reading ASBMB Today?
Become a member to receive the print edition four times a year and the digital edition monthly.
Learn moreGet the latest from ASBMB Today
Enter your email address, and we鈥檒l send you a weekly email with recent articles, interviews and more.
Latest in Science
Science highlights or most popular articles

Neurobiology of stress and substance use
MOSAIC scholar and proud Latino, Bryan Cruz of Scripps Research Institute studies the neurochemical origins of PTSD-related alcohol use using a multidisciplinary approach.

Pesticide disrupts neuronal potentiation
New research reveals how deltamethrin may disrupt brain development by altering the protein cargo of brain-derived extracellular vesicles. Read more about this recent 偷拍偷窥 & Cellular Proteomics article.

A look into the rice glycoproteome
Researchers mapped posttranslational modifications in Oryza sativa, revealing hundreds of alterations tied to key plant processes. Read more about this recent 偷拍偷窥 & Cellular Proteomics paper.

Proteomic variation in heart tissues
By tracking protein changes in stem cell鈥揹erived heart cells, researchers from Cedars-Sinai uncovered surprising diversity 鈥� including a potential new cell type 鈥� that could reshape how we study and treat heart disease.

Parsing plant pigment pathways
Erich Grotewold of Michigan State University, an ASBMB Breakthroughs speaker, discusses his work on the genetic regulation of flavonoid biosynthesis.

Calcium channel linked to cancer drug resistance
Researchers discover a protein associated with carboplatin-resistant retinoblastoma, suggesting this protein could be a promising therapeutic target. Read more about this recent Journal of Biological Chemistry paper.