偷拍偷窥

Journal News

The metabolic trigger that activates sperm

John Arnst
Nov. 13, 2020

When viewed under a microscope, sperm cells typically look like eager swimmers with a singular purpose. But despite the haste that their flagella and behavior imply, sperm are hardly ready to go at a moment’s notice.

Leeuwenhoek-art-445x963.jpg
WELLCOME TRUST COLLECTION
Antoni Van Leeuwenhoek first observed the structure of sperm in 1677, which
he detailed here in his 1719 book "Opera omnia."

After ejaculation, they need up to an hour to undergo a process of posttranslational modifications called capacitation, which alters their heads so they can merge with an egg and changes the movement patterns of their tails to a frenzied state of hyperactivity before they are able to fertilize that egg. While in this state, sperm shut off their typical metabolic pathway, oxidative phosphorylation, and instead begin to rely on glycolysis for their final push. One of the biochemical changes that makes capacitation possible is the covalent addition of sialic acid to the terminal end of glycoproteins, or sialyation, a process that only affects a handful of proteins on sperm but is essential to fertilization.

To better understand the role that sialyation plays in fertilization, researchers at the University of Newcastle used a tandem mass spectrometry and liquid chromatograph approach to examine the glycoproteomic changes in sperm cells that had been made to undergo capacitation through incubation for 90 minutes. They detailed in the journal 偷拍偷窥 & Cellular Proteomics.

“We wanted to know, if we take sperm before and after capacitation, what would change in terms of the sialic acid proteins,” said , a Newcastle scientist who researches the proteomics of sperm and male fertility. “And the answer was extremely little, which was quite surprising. Very, very, very few proteins, 0.4% or something stupidly small.”

But the paltry six proteins that Baker and his colleagues found had decreased sialic acid content, which he attributed to either shedding or the activity of a glycosidase, turned out to be glycolic red herrings after they noted a lone protein that had increased sialyation.

That protein’s name? Aconitase, or ACO2, an enzyme in the citric acid cycle that catalyzes the isomerization of citrate to isocitrate. Thanks to a computer model built by Vincenzo Carbone, a co-author at the Grasslands Research Centre, the researchers then found that sialyation causes a conformational change in aconitase’s alpha helix that distorts its active site and completely shuts it down, along with oxidative phosphorylation as a whole.

“We think that would suggest that when you stop oxidative phosphorylation and shuttle the metabolic pathway through to glycolysis, that’s probably a trigger for the hyperactivation, or probably helps it in some way, but we don’t know,” Baker said.

However, hyperactivity itself is not well understood. According to Baker, researchers currently have multiple competing theories about its role and purpose in fertilization.

“The only thing that we know for sure is that without hyperactivation, you just don’t get fertility.”

Enjoy reading ASBMB Today?

Become a member to receive the print edition four times a year and the digital edition monthly.

Learn more
John Arnst

John Arnst was a science writer for ASBMB Today.

Get the latest from ASBMB Today

Enter your email address, and we鈥檒l send you a weekly email with recent articles, interviews and more.

Latest in Science

Science highlights or most popular articles

RA patient blood reveals joint innerworkings
Journal News

RA patient blood reveals joint innerworkings

July 25, 2025

Researchers in the Netherlands use mass spectrometry to compare the proteome of plasma and synovial fluid in rheumatoid arthritis patients and find a correlation. Read more about this recent paper in 偷拍偷窥 & Cellular Proteomics.

Hope for a cure hangs on research
Essay

Hope for a cure hangs on research

July 17, 2025

Amid drastic proposed cuts to biomedical research, rare disease families like Hailey Adkisson鈥檚 fight for survival and hope. Without funding, science can鈥檛 鈥渃atch up鈥� to help the patients who need it most.

Before we鈥檝e lost what we can鈥檛 rebuild: Hope for prion disease
Feature

Before we鈥檝e lost what we can鈥檛 rebuild: Hope for prion disease

July 15, 2025

Sonia Vallabh and Eric Minikel, a husband-and-wife team racing to cure prion disease, helped develop ION717, an antisense oligonucleotide treatment now in clinical trials. Their mission is personal 鈥� and just getting started.

Defeating deletions and duplications
News

Defeating deletions and duplications

July 11, 2025

Promising therapeutics for chromosome 15 rare neurodevelopmental disorders, including Angelman syndrome, Dup15q syndrome and Prader鈥揥illi syndrome.

Using 'nature鈥檚 mistakes' as a window into Lafora disease
Feature

Using 'nature鈥檚 mistakes' as a window into Lafora disease

July 10, 2025

After years of heartbreak, Lafora disease families are fueling glycogen storage research breakthroughs, helping develop therapies that may treat not only Lafora but other related neurological disorders.

Cracking cancer鈥檚 code through functional connections
News

Cracking cancer鈥檚 code through functional connections

July 2, 2025

A machine learning鈥揹erived protein cofunction network is transforming how scientists understand and uncover relationships between proteins in cancer.